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Abstract

Semantic Scene Completion (SSC) aims to reconstruct a 3D
voxel representation occupied by semantic classes based on
ordinary inputs such as 2D RGB images, depth maps, or point
clouds. Given the cost-effective and promising applications
in autonomous driving, camera-based SSC has attracted con-
siderable attention to developing various approaches. How-
ever, current methods mainly focus on precise 2D-to-3D pro-
jection while overlooking the challenge of completing invis-
ible regions, leading to numerous false negatives and sub-
optimal SSC performance. To address this issue, we pro-
pose a novel architecture, Memory-augmented Re-completion
(MARE), designed to enhance completion capability. Our
MARE model encapsulates regional relationships by incor-
porating a memory bank that stores vital region-tokens while
two protocols concerning diversity and age are adopted to
optimize the bank adversarially. Additionally, we introduce
a Re-completion pipeline incorporated with an Information
Spreading module to progressively complete the invisible re-
gions while bridging the scale gap between region-level and
voxel-level information. Extensive experiments conducted on
the SSCBench-KITTI-360 and SemanticKITTI datasets vali-
date the effectiveness of our approach.

Code — https://github.com/ywtseng0226/MARE

Introduction
Learning to thoroughly comprehend the environment is cru-
cial for autonomous vehicles, encompassing the recogni-
tion and reaction to various elements such as road condi-
tions (Singh et al. 2022), pedestrian movement (Duan et al.
2022), and other vehicles (Guériau et al. 2015; Xu et al.
2023). With a satisfactory understanding of the scene, the
perception systems can provide precise navigation and ef-
fectively avoid collisions, ensuring the safety of both passen-
gers and others on the road. Consequently, the development
of advanced methods that enhance AI’s ability to accurately
perceive and interact with the real world is vital for advanc-
ing the capabilities of autonomous driving systems.

To build reliable strategies for self-driving automobiles,
one of the related tasks is 3D Semantic Scene Comple-
tion (SSC), which seeks to infer both the occupancy and
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Figure 1: Insufficient completion problem. We illustrate
the input image, ground truth, and prediction from Sym-
phonies on SSCBench-KITTI-360. The voxels highlighted
in light gray within the prediction represent false negatives.

semantic state of each voxel in the 3D space. The chal-
lenge of SSC lies in understanding the environment using
relatively coarse inputs, such as monocular RGB images or
sparse point clouds, while the fine-grained dense volumes
are expected to describe the surroundings as the vehicle
moves across streets. Although recent advancements (Cao
and De Charette 2022; Li et al. 2023c; Jiang et al. 2024)
have facilitated the evolution of SSC by introducing various
techniques to transfer knowledge between 2D and 3D repre-
sentations, a fundamental issue, termed insufficient comple-
tion, persists. As shown in Figure 1, the 3D scene volume
generated by the SOTA method (Jiang et al. 2024) contains
numerous false negatives (FNs) colored in light gray.

These FNs are primarily found in invisible regions, which
include two scenarios: occlusion, exemplified by the area
occluded by the truck in the left example, and regions out-
side the field-of-view (FOV), such as the road sections on
either side that are absent from the 2D image. This observa-
tion highlights the significant challenges in existing models:
completing the invisible regions solely based on input infor-
mation is insufficient, which results in a high empty rate of



prediction. Moreover, current methods notably lack a mech-
anism to adequately fill these areas. Successfully completing
these regions to preserve the integrity of object shapes could
significantly enhance the safety and accuracy of decisions
made in autonomous driving systems.

In this paper, we introduce a novel architecture, Memory-
augmented Re-completion (MARE), designed to address the
incomplete predictions in invisible regions. MARE aims to
enhance the completion of these regions by leveraging re-
gional information derived from visible areas. To achieve
this, we incorporate a token-based SSC Transformer, em-
ploying cross-attention modules to facilitate the transfer of
2D information into 3D volume features, with token features
serving as intermediate mediators. During this process, to-
kens encapsulating regional-level information, referred to as
region-tokens, are generated. We establish a Regional Mem-
ory Bank using the generated region-tokens, which effec-
tively aggregates representative features. This process con-
siders the diversity and age of the storage units during mem-
ory updates, enabling the model to reference stored features
during voxel prediction and mitigating the issue of insuffi-
cient information in invisible regions. Additionally, we pro-
pose the Re-completion pipeline to bridge prediction gaps
across varying visibility levels by injecting relevant token
features into invisible areas. This approach is complemented
by the Information Spreading module, integrating the scale
gap between regional and voxel-level representations. The
combined strategy enhances the accuracy and completeness
of 3D scene reconstruction by existing SSC models, partic-
ularly in areas occluded or outside the FOV.

To evaluate the effectiveness of our proposed MARE
framework, we conducted extensive experiments on two
challenging large-scale benchmarks, including SSCBench-
KITTI-360 and SemanticKITTI. Our MARE outperforms
SOTAs and sets new art by achieving mIoU scores of
18.84 and 15.39, respectively. Beyond the competitive mIoU
scores, MARE demonstrates exceptional robustness in com-
pletion ability, as evidenced by the impressive recall scores
of 57.09 and 65.38 on these datasets. These results highlight
remarkable improvements over other SSC approaches.

Our contributions can be summarized as follows:

• Through a visual analysis of false negative voxels, we
found that current SSC methods, relying solely on visible
information from the input, are insufficient for fully com-
pleting the invisible regions. Additionally, these methods
lack mechanisms for effectively filling in these regions.

• We propose MARE, a novel SSC paradigm designed to
improve the completion of invisible regions. By leverag-
ing a token-based SSC Transformer, MARE constructs a
Regional Memory Bank as a feature repository guided by
two principles. The Re-completion pipeline subsequently
uses pivots from the memory bank to enrich incomplete
regions, enabling a more accurate scene reconstruction.

• Our method outperforms existing approaches in chal-
lenging SSC benchmarks, including SSCBench-KITTI-
360 and SemanticKITTI, with significant improvements,
highlighting MARE’s robustness in accurately predicting
invisible voxels that were initially classified as empty.

Related Work
3D Semantic Scene Completion
3D SSC, first proposed by SSCNet (Song et al. 2017),
aims to predict the occupancy and semantic status of each
voxel within the 3D scene using insufficient sensor infor-
mation, such as LiDAR point clouds, depth maps, and 2D
RGB images. Subsequently, some methods have used Li-
DAR point clouds as the primary input modality (Garbade
et al. 2019; Rist et al. 2021; Xia et al. 2023), leveraging
their innate 3D depth information. However, considering
the cost-efficiency and compatibility of sensors, recent re-
searchers have shifted their focus to camera-based SSC (Cao
and De Charette 2022; Huang et al. 2023; Li et al. 2023c;
Wang and Tong 2024; Li et al. 2023a; Jiang et al. 2024).
MonoScene (Cao and De Charette 2022) introduces the first
camara-based solution for SSC. TPVFormer (Huang et al.
2023) utilizes a tri-perspective view (TPV) to represent the
3D scene, serving as a trade-off between 3D dense volume
and bird’s eye view (BEV). VoxFormer (Li et al. 2023c) in-
troduces a two-stage pipeline, allowing the model to first
propose a class-agnostic scene and then further infer the
semantic status. H2GFormer (Wang and Tong 2024) lever-
ages horizontal-to-global attention and Internal-External Po-
sition Awareness Loss to achieve significant performance
improvements in SSC. Symphonies (Jiang et al. 2024) uses
region-level queries as an information bridge between 2D
and 3D, thereby expanding the receptive field of the features.
Although current camera-based SSC methods improve the
accuracy of transferring information from 2D to 3D spaces,
the information scarcity for invisible regions remains unre-
solved. To overcome this limitation, we introduce MARE, a
paradigm that leverages memory-augmented information to
effectively bridge these gaps.

Memory-augmented Representation Learning
Memory-augmented models in learning-based investiga-
tions are designed to enhance learning by incorporating
external memory modules. These modules allow models
to store, retrieve, and update information dynamically, en-
abling them to perform tasks that require reasoning over
long sequences or retaining important information over
learning periods. This technique has a broad spectrum of ap-
plications, spanning Natural Language Processing (Dai et al.
2019; Borgeaud et al. 2022), Computer Vision (Oh et al.
2019; Gao and Wang 2023; He et al. 2024), Reinforcement
Learning (Jeddi, Dehghani, and Shafieezadeh 2023; Morad
et al. 2024), and Large Language Model (Wang et al. 2024).
A common challenge these methods address is the lack of
sufficient information, which is often alleviated by utiliz-
ing additional resources to create a memory bank for im-
proved contextual understanding. This challenge is analo-
gous to the problem encountered in the camera-based SSC,
where 2D images only provide information for visible re-
gions, leaving occluded or out-of-view areas as invisible
ones. To overcome this limitation, we introduce a Regional
Memory Bank that stores essential token features and learns
a general representation of urban environments from visible
regions, thereby effectively filling in the invisible areas.
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Figure 2: Overview of MARE. The MARE paradigm is composed of three key components: (a) the SSC Transformer, which
performs initial information extraction and understanding of visible regions; (b) the Regional Memory Bank, which stores the
region-tokens generated by the SSC Transformer and updates key-value pairs to serve as a comprehensive repository represent-
ing the urban view; and (c) the Re-completion pipeline, which identifies and progressively re-completes invisible areas using
region-tokens, with the Information Spreading module bridging the scale gap between region-level and voxel-level feature.

Methodology
Problem Formulation
Utilizing a 2D image I captured by a camera mounted on
a vehicle, the primary objective of the SSC task is to pre-
dict a 3D volume ŷ ∈ RH×W×D, which segments the ob-
served scene. Each voxel within this predicted volume is as-
sociated with a class ci ∈ C = {c0, c1, · · · , cN}, where c0
specifically denotes empty, and the other N classes corre-
spond to various semantic classes. Unlike prior methods (Li
et al. 2023c; Wang and Tong 2024), which incorporate data
from previous frames, our method exclusively leverages the
current frame to train the SSC model F . By optimizing
the model parameters θ, we aim to generate predictions
ŷ = F(I; θ) that closely match the actual ground truth y.

Memory-augmented Re-completion
Conventional SSC methods mainly focus on completing vis-
ible regions while neglecting the invisible areas within the
scene. To address this limitation, we propose the Memory-
augmented Re-completion (MARE) framework, which en-
hances the completion of these neglected regions by gradu-
ally injecting tokens to voxel space. As depicted in Figure 2,
MARE comprises three key components: the SSC Trans-
former, the Regional Memory Bank, and the Re-completion
pipeline, which we refer to by their abbreviations, T , B, and
R, respectively. The SSC Transformer processes the input
to generate region-tokens and a 3D representation that re-
flects the understanding of the visible surroundings. This
initial module T ensures that the model effectively captures
both the semantic and spatial information from the visible

regions. The Regional Memory Bank then stores region-
tokens and updates based on the designed criteria, i.e., di-
versity and age of the token, to maintain a robust and rep-
resentative knowledge base of urban 3D views in B. Even-
tually, the Re-completion pipeline fills in the invisible re-
gions by accessing the stored tokens, following an Informa-
tion Spreading module to alleviate the scale gap between
region-tokens and voxel features. We elaborate on the de-
tails of each component in the following sections.

SSC Transformer. In contrast to previous methods (Cao
and De Charette 2022; Li et al. 2023c) that focus solely on
aligning 2D pixels with 3D voxels during the transfer of in-
formation from 2D to 3D, we build upon the token-based
approach (Jiang et al. 2024) that utilizes region-tokens as
intermediaries. The token-based architecture provides more
flexible and abstract scene representations, enabling more
effective knowledge transformation between the 2D and 3D
domains. As illustrated in Figure 2 (a), the 2D image I is
processed by the encoder E (Li et al. 2023b), resulting in 2D
multi-scale features and token features. For simplicity, we
omit the backbone (He et al. 2016), which serves as a fea-
ture extractor and precedes the encoder. These token-based
representations and the 3D voxel feature are then decoded
by D, which employs cross-attention mechanisms to gener-
ate 3D features. The entire process can be formulated as:

T, ν = D(E(I; θ)), (1)

where T and ν represent the decoded token features and
voxel features, respectively, while θ denotes the model pa-
rameters that need to be updated during the process. More



Algorithm 1: Memory Updating

1: Input: new region-token ti ∈ T and current tk ∈ B
2: Output: updated region-tokens in memory bank
3: Ω = B ∪T
4: Set initial age Sa(ti) = 0 for all new tokens ti
5: Start memory Updating:
6: for i = 1 to |Ω| do

7: Sd(ti)← −
∑|Ω|

j=1

ti · tj
∥ti∥ ∥tj∥

, i ̸= j

8: end for
9: S ← Sd − Sa

10: Select highest |B| score and update the bank
11: Increase the age of all tokens in B

precisely, leveraging T allows the receptive field of token
features to extend beyond the voxel level, facilitating a more
comprehensive integration of information across different
scales, which leads to holistic 3D scene reconstruction.

Regional Memory Bank. The principle goal of B is to
gather representations containing the characteristics that
preserve the relationships between regions within the scene.
As shown in Figure 2 (b), we choose to arrange a bank
that collects the region-tokens derived from D for two ad-
vantageous reasons: computational efficiency and manage-
ability. Firstly, storing region-tokens reduces storage costs
significantly compared to alternatives like vanilla multi-
scale features (Liu and Mukhopadhyay 2018) or learn-
able atoms (Liu, Wang, and Cai 2024). Additionally, using
region-tokens simplifies the modeling of complex relation-
ships, as these tokens act as intermediaries between 2D re-
gions and voxel-based representations.

Given a 2D RGB image I , the transformer T yields tokens
T described region-level information for visible regions, as-
sociating with the corresponding reference points P mapped
to the 3D space. For each region-token ti ∈ T, we search k
nearest neighbors to construct the key set, composing the
key-value pair {Ki, ti}. Formally, the formulation for ob-
taining element kn ∈ Ki is defined as

kn = argmin
tj

[d(ti, tj)] ∀i ̸= j, (2)

where 1 ≤ j ≤ |T| represents the index for retrieving and
d(·) denotes the distance function for two region-tokens.

The key-value pairs derived from (2) can be utilized in
the upcomingR, restricting the model focus on relevant 3D
points corresponding to regions in the 2D image, particu-
larly in areas that are not directly visible. To ensure that
the attention mechanism accurately identifies and prioritizes
these relevant 3D points, the distance between region-tokens
is measured using the Euclidean distance between their cor-
responding reference points in the 3D space, which is for-
mulated as

d(ti, tj) = ∥pi − pj∥2, (3)
where pi and pj ∈ P are reference points that are homolo-
gous to region-tokens ti and tj , respectively.

During the training phase, key-value pairs are progres-
sively embedded into B along with each mini-batch. As the

memory capacity exceeds the predefined size |B|, i.e., the
cardinality of B, we update the bank based on our planned
protocols, considering both the diversity and age of tokens
to determine whether they should be retained or removed ad-
versarially. The diversity criterion confirms that the contents
in B remain varied while effectively capturing regional in-
formation across scenes. To achieve this, we estimate each
candidate based on cosine similarity, which is defined as

Sd(ti) =
|Ω|∑
i ̸=j

ti · tj
∥ti∥ ∥tj∥

, (4)

where Ω = B∪T, indicating that this property is considered
within both B and T. More precisely, the similarity score
in (4) is calculated using indices from both the current bank
and the dominant region-tokens.

The other protocol concerning liquidity aims to prevent
the accumulation of outdated tokens in B. Since the scene
obtained by the vehicle continually changes, older tokens in
B may lose their generalization capability and could even
impair the model’s performance. Inspired by the concept
of (Yuan, Xie, and Li 2023), we encourage the inclusion of
new tokens to prevent the potential domain gap between out-
dated and current content. In practice, we denote Sa(ti) to
symbolize the age of the token, which is initialized at 0 and
increases with each mining. The overall score for determi-
nation can be formulated as

S(ti) = Sd(ti)− Sa(ti). (5)

Based on the total scores computed in (5), the key-value
pairs in B are retained through an adversarial selection, con-
firming that the stored representations remain relevant and
effective. The detailed procedure for memory updating is of-
fered in Algorithm 1.

Re-completion Pipeline. Upon obtaining representative
region-tokens stored in the memory bank, as depicted in Fig-
ure 2 (c), we utilize them to enhance the predicted voxel fea-
tures, particularly for the invisible regions. To determine the
visibility of these regions, we follow previous methods (Li
et al. 2023c; Jiang et al. 2024; Wang and Tong 2024) that es-
timate the depth map using an off-the-shelf model (Shamsa-
far et al. 2022). The generated depth map Z is then projected
onto 3D coordinates, which can be formulated as

x =
(u− ωu)

fu
z, y =

(v − ωu)

fv
z, z = Z(u, v), (6)

where ωu, ωv, fu, fv are camera positional information and
configurations, representing the the center and focal length
for horizontal and vertical, respectively.

As noted in (Li et al. 2023c), the 3D point cloud generated
often exhibits a weak representation due to the highly incon-
sistent depth at the horizon. This issue is particularly pro-
nounced in long-range areas, where only a limited number of
pixels are available to determine the depth of a vast region.
Moreover, we observe that the projected points are predomi-
nantly concentrated on the lowest plane within the 3D space.
Based on these observations, we eliminate the height di-
mension of all visible points, projecting them onto the BEV.
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MonoScene 37.87 56.73 53.26 12.31 19.34 0.43 0.58 8.02 2.03 0.86 48.35 11.38 28.13 3.32 32.89 3.53 26.15 16.75 6.92 5.67 4.20 3.09
TPVFormer 40.22 59.32 55.54 13.64 21.56 1.09 1.37 8.06 2.57 2.38 52.99 11.99 31.07 3.78 34.83 4.80 30.08 17.52 7.46 5.86 5.48 2.70
VoxFormer 38.76 58.52 53.44 11.91 17.84 1.16 0.89 4.56 2.06 1.63 47.01 9.67 27.21 2.89 31.18 4.97 28.99 14.69 6.51 6.92 3.79 2.43
OccFormer 40.27 59.70 55.31 13.81 22.58 0.66 0.26 9.89 3.82 2.77 54.30 13.44 31.53 3.55 36.42 4.80 31.00 19.51 7.77 8.51 6.95 4.60
Symphonies 44.12 69.24 54.88 18.58 30.02 1.85 5.90 25.07 12.06 8.20 54.94 13.83 32.76 6.93 35.11 8.58 38.33 11.52 14.01 9.57 14.44 11.28

MARE (Ours) 46.10 70.53 57.09 18.84 28.37 2.86 7.22 15.85 7.27 6.74 60.14 15.83 37.98 4.56 41.66 7.75 37.09 21.47 13.90 15.42 9.56 5.53

Table 1: Quantitative results on SSCBench-KITTI-360 test. The best results are in bold. MARE surpasses all previous
methods across multiple metrics and shows substantial improvements in specific categories, i.e., road, sidewalk, and building.

This projection results in a visible binary mask, denoted as
Mvis. Conversely, the corresponding invisible maskMinv

can be obtained by reversingMvis. Since our re-completion
method is designed explicitly for invisible regions and aims
to distill information from visible areas, it is intuitive to pri-
oritize filling areas adjacent to the region-tokens. To accom-
plish this, we apply a kernel expansion technique to identify
the neighboring areas around P, which are then combined
withMinv to acquire the re-complete maskMrec.

In the Information Spreading module, each invisible posi-
tion inMrec, we carry out Re-completion by reuse (2), re-
sulting in k neighbors serving as the keys, denoted as Krec.
These keys subsequently go through the B to query the to-
kens injected into the 3D voxel features. We follow the strat-
egy (Van Den Oord, Vinyals et al. 2017), where the memory
bank is treated as a codebook to implement the querying and
injecting process. After computing the similarity between
the keys, the corresponding value is selected using a one-
hot vector, allowing the entire process to be seamlessly in-
tegrated into our end-to-end training framework. While the
Re-completion process injects tokens encapsulating region-
level information, a scale discrepancy arises when equipping
the voxel features with these tokens. To settle this problem,
we adopt the Atrous Spatial Pyramid Pooling (ASPP) (Chen
et al. 2017), which contains multi-scale dilated convolutions
while a skip connection stabilizes gradient updates. Finally,
the voxel features are passed through a segmentation head to
obtain the semantic prediction.

Loss Function

The proposed MARE uses a similar optimization design in
MonoScene (Cao and De Charette 2022). The overall loss
can be formulated as:

L = Lce + Lgeo
scal + L

sem
scal , (7)

where the cross-entropy lossLce optimize the semantic clas-
sification results for each voxels. The Scene-Class Affinity
Loss Lscal optimize the overall score, i.e., precision, call,
and specificity. It can be further divided into class-agnostic
and semantic versions as Lgeo

scal and Lsem
scal .

Experiments
Experimental Setup
Datasets and Evaluation Metrics. The evaluation is per-
formed on SSCBench-KITTI-360 (Li et al. 2024) and Se-
manticKITTI (Behley et al. 2019) datasets, which provide
densely annotated urban driving scene sequences from the
KITTI Odometry Benchmark (Geiger, Lenz, and Urtasun
2012). A target 3D scene of size 51.2m×51.2m×6.4m is di-
vided into 256× 256×32 voxel grids, with each voxel grid
having a size of 0.2m×0.2m×0.2m. SSCBench-KITTI-360
provides 9 video sequences, with 7 for training, 1 for valida-
tion, and 1 for testing. SemanticKITTI provides 20 video se-
quences, with 9 for training, 1 for validation, and 11 for test-
ing. Following previous works (Cao and De Charette 2022;
Li et al. 2023c; Jiang et al. 2024), we use mean IoU as the
evaluation metric for semantic scene completion and IoU as
the evaluation metric for class-agnostic scene completion.

Implementation Details. Based on the region-token-
based SSC method with our proposed MARE paradigm, the
model is trained in an end-to-end manner with two NVIDIA
V100 GPUs for 30 epochs, with a batch size of two images.
In line with Symphonies (Jiang et al. 2024), We employ
the AdamW (Loshchilov and Hutter 2017) as the optimizer,
ResNet-50 (He et al. 2016) as the backbone, and the pre-
trained weights of MaskDINO (Li et al. 2023b) as the token-
based Encoder. In the Regional Memory Bank, we set the
size |B| as 1024 and the number of neighbor tokens k as 3.
In the Re-completion pipeline, we re-complete the scene for
two iterations. These configurations in our proposed MARE
paradigm are based on experimental observations.

Baseline Methods. Within the scope of the SSC task,
there has been growing interest in camera-based SSC ap-
proaches due to their cost-effectiveness and portability. Ac-
cordingly, this section focuses on comparisons of camera-
based methods. Specifically, we compare our approach with
the region-token based method Symphonies (Jiang et al.
2024), the pioneering MonoScene (Cao and De Charette
2022), and other state-of-the-art methods such as TPV-
Former (Huang et al. 2023), VoxFormer (Li et al. 2023c),
OccFormer (Zhang, Zhu, and Du 2023), NDC-Scene (Yao
et al. 2023), and H2GFormer (Wang and Tong 2024).
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MonoScene∗ 36.86 52.19 55.50 11.08 56.52 26.72 14.27 0.46 14.09 23.26 6.98 0.61 0.45 1.48 17.89 2.81 29.64 1.86 1.20 0.00 5.84 4.14 2.25
TPVFormer 35.61 - - 11.36 56.50 25.87 20.60 0.85 13.88 23.81 8.08 0.36 0.05 4.35 16.92 2.26 30.38 0.51 0.89 0.00 5.94 3.14 1.52

VoxFormer-S 44.02 62.32 59.99 12.35 54.76 26.35 15.50 0.70 17.65 25.79 5.63 0.59 0.51 3.77 24.39 5.08 29.96 1.78 3.32 0.00 7.64 7.11 4.18
OccFormer 36.50 - - 13.46 58.85 26.88 19.61 0.31 14.40 25.09 25.53 0.81 1.19 8.52 19.63 3.93 32.62 2.78 2.82 0.00 5.61 4.26 2.86
NDC-Scene 37.24 - - 12.70 59.20 28.24 21.42 1.67 14.94 26.26 14.75 1.67 2.37 7.73 19.09 3.51 31.04 3.60 2.74 0.00 6.65 4.53 2.73

H2GFormer-S 44.57 62.17 61.16 13.73 56.08 29.12 17.83 0.45 19.74 27.60 10.00 0.50 0.47 7.39 26.25 7.80 34.42 1.54 2.88 0.00 7.24 7.88 4.68
Symphonies 41.92 - - 14.89 56.37 27.58 15.28 0.95 21.64 28.68 20.44 2.54 2.82 13.89 25.72 6.60 30.87 3.52 2.24 0.00 8.40 9.57 5.76

MARE (Ours) 43.20 56.01 65.38 15.39 56.26 25.91 19.46 0.65 23.36 29.06 17.82 2.83 3.63 13.54 26.80 8.31 33.80 3.20 2.10 0.00 10.38 9.39 5.95

Table 2: Quantitative results on SemanticKITTI val. ∗ represents the reproduced results in (Huang et al. 2023). The best
results are in bold. MARE demonstrates superior performance compared to all other methods, particularly in the recall score.
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Figure 3: Recall tendency on SemanticKITTI. Throughout
the training process, MARE approximately exhibits better
completion performance compared to Symphonies.

Quantitative Results

Results on SSCBench-KITTI-360 test. As shown in Ta-
ble 1, indicate that MARE achieves superior performance,
surpassing all competing methods. Specifically, MARE
demonstrates notable performance gains over Symphonies,
with improvements of 2.02 in IoU, 1.31 in precision, 2.21
in recall, and 0.26 in mIoU. Importantly, the significant en-
hancements in class-agnostic metrics such as IoU and recall
highlight MARE’s efficacy in accurately re-completing vox-
els initially misclassified as empty. Furthermore, significant
enhancements in IoU scores were observed for classes fre-
quently found around visible regions. Specifically, the IoU
score for road improved from 54.94 to 60.14, for sidewalk
from 32.76 to 37.98, and for building from 35.11 to 41.66.
For categories that exhibited a decline in performance, such
as truck and other-vehicle, we hypothesize that this degrada-
tion may be linked to our injection mechanism, which could
slightly disrupt the fine feature representation needed at the
edges of visible regions. In contrast, categories character-
ized by more coarse features, such as road and building, have
demonstrated significant improvements. This identified lim-
itation presents an opportunity for future work to enhance
the performance of our designed paradigm.

Results on SemanticKITTI val. As shown in Table 2,
our proposed MARE method surpasses previous camera-
based SSC approaches, particularly in terms of recall score,
where a significant improvement is observed. This substan-
tial increase underscores the efficacy of our approach in
accurately re-completing voxels that were previously mis-
classified as empty, further validating the robustness of our
method. Nevertheless, the decline in the score of precision
deserves attention. Upon examining the dataset, we identi-
fied that, despite the widespread use of SemanticKITTI in
SSC tasks, inconsistencies in labeling, particularly for cate-
gories such as moving objects, are prevalent. These inconsis-
tencies likely disrupt the learning of token representations,
which we hypothesize as a contributing factor to the compar-
atively smaller improvement of MARE on SemanticKITTI
relative to SSCBench-KITTI-360.

Recall Tendency. To assess the efficacy of our proposed
MARE method in re-completing voxels that might otherwise
be misclassified as empty, recall is a pivotal performance
metric. The quantitative results across both datasets have
demonstrated substantial improvements in recall scores. In
this analysis, we further examine the progression of recall
scores throughout the training process. As illustrated in Fig-
ure 3, MARE not only achieves higher recall scores from the
initial epoch but also consistently outperforms Symphonies
throughout the training process. This trend indicates that
our proposed Re-completion pipeline effectively drives the
model to identify and predict more occupied voxels during
learning, thereby mitigating the tendency to classify invisi-
ble regions as empty.

Qualitative Results
The qualitative results comparing MARE and Symphonies
on the SSCBench-KITTI-360 dataset are depicted in Fig-
ure 4. We present three examples to illustrate the effective-
ness of MARE in re-completing invisible regions. In the sec-
ond and last rows, Symphonies struggles to detect certain
classes outside of FOV areas, i.e., road, parking, and ter-
rain. MARE, on the other hand, successfully re-completes
these regions, providing accurate predictions for the correct
classes. In the final row, MARE not only completes the side
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Figure 4: Qualitative results on SSCBench-KITTI-360. The regions marked with red boxes in the figure illustrate that MARE
is capable of accurately completing invisible areas, including those outside of FOV and regions that are occluded.

T R B IoU Prec. Rec. mIoU

✓ 43.80 68.10 55.10 18.25
✓ ✓ 45.99 70.43 56.99 18.60
✓ ✓ ✓ 46.10 70.53 57.09 18.84

Table 3: Ablation study on components in MARE. T , R,
and B denote the SSC Transformer, Re-completion pipeline,
and Regional Memory Bank respectively.

Near Medium Far IoU Prec. Rec. mIoU

✓ 42.95 59.20 61.00 15.06
✓ ✓ 43.20 56.01 65.38 15.39
✓ ✓ ✓ 43.03 60.05 60.30 14.01

Table 4: Ablation study on iteration for Re-complete.
Near, medium, and far respectively represent the distance
levels after the first, second, and third re-completion.

building but also accurately predicts the road occluded by
a vehicle in the distance. The examples above demonstrate
that MARE can effectively complete invisible regions, al-
lowing for a more comprehensive and accurate understand-
ing of the surrounding scene. In the context of autonomous
driving applications, this provides a more complete percep-
tion result for subsequent decision-making processes.

Ablation Study
We conduct an in-depth analysis of the key components of
MARE on the SSCBench-KITTI-360 dataset, while the it-
eration process of the Re-completion pipeline is specifically
examined on the SemanticKITTI dataset. This analysis pro-
vides insights into the performance enhancements attributed
to each component and process in MARE.

Effectiveness of each module in MARE. As shown in
Table 3, the first row denotes the performance of the T
alone. In the second row, whereR is added without memory-
augmented information, the nearest region-token from the
visible area is used as the injected token. Initial performance
enhancements are observed with the re-completion process,
with the most significant improvements occurring in the fi-
nal row after integrating the memory bank B.

Iterations for Re-completion pipeline. In the Re-
completion pipeline, the filling process can iterate multiple
times, adopting a near-to-far re-completion strategy. After
each iteration, the injected tokens are integrated into the vis-
ible information, forming the basis for the next iteration. Re-
sults in Table 4 show that the second iteration yields the best
performance, as the third iteration reaches the scene’s less
critical edges, often unlabeled.

Conclusion
We have presented Memory-augmented Re-completion
(MARE), an architecture designed to address the challenges
of camera-based Semantic Scene Completion (SSC), par-
ticularly the accurate completion of invisible regions. By
leveraging a Regional Memory Bank and Re-completion
pipeline, MARE effectively captures and reuses vital region-
level information, bridging the perception gap between vis-
ible and invisible areas within urban view in autonomous
driving scenarios. Our approach enhances the understand-
ing of the 3D environment and significantly improves per-
formance, as demonstrated by extensive experiments on two
datasets. The experimental results highlight MARE’s ability
to achieve superior mIoU and recall scores compared to ex-
isting methods, establishing it as a robust solution for SSC
tasks in autonomous driving scenarios. Future work can ex-
tend this framework to other domains and refine the model
to carry out even more complex environments effectively.



Acknowledgments
This work is partially supported by the National Science
and Technology Council, Taiwan, under Grants: NSTC-112-
2628-E-002-033-MY4, NSTC-112-2634-F-002-002-MBK,
NSTC-112-2221-E-A49-059-MY3 and NSTC-112-2221-E-
A49-094-MY3, and was financially supported in part by
the Center of Data Intelligence: Technologies, Applica-
tions, and Systems, National Taiwan University (Grants:
114L900901/114L900902/114L900903), from the Featured
Areas Research Center Program within the framework of the
Higher Education Sprout Project by the Ministry of Educa-
tion, Taiwan.

References
Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke,
S.; Stachniss, C.; and Gall, J. 2019. Semantickitti: A dataset
for semantic scene understanding of lidar sequences. In
ICCV.
Borgeaud, S.; Mensch, A.; Hoffmann, J.; Cai, T.; Ruther-
ford, E.; Millican, K.; Van Den Driessche, G. B.; Lespiau,
J.-B.; Damoc, B.; Clark, A.; et al. 2022. Improving language
models by retrieving from trillions of tokens. In ICML.
Cao, A.-Q.; and De Charette, R. 2022. Monoscene: Monoc-
ular 3d semantic scene completion. In CVPR.
Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and
Yuille, A. L. 2017. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE TPAMI.
Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q. V.; and
Salakhutdinov, R. 2019. Transformer-xl: Attentive lan-
guage models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.
Duan, J.; Wang, L.; Long, C.; Zhou, S.; Zheng, F.; Shi, L.;
and Hua, G. 2022. Complementary attention gated network
for pedestrian trajectory prediction. In AAAI.
Gao, R.; and Wang, L. 2023. MeMOTR: Long-term
memory-augmented transformer for multi-object tracking.
In ICCV.
Garbade, M.; Chen, Y.-T.; Sawatzky, J.; and Gall, J. 2019.
Two stream 3d semantic scene completion. In CVPR Work-
shop.
Geiger, A.; Lenz, P.; and Urtasun, R. 2012. Are we ready
for autonomous driving? the kitti vision benchmark suite. In
CVPR.
Guériau, M.; Billot, R.; El Faouzi, N.-E.; Hassas, S.; and
Armetta, F. 2015. Multi-agent dynamic coupling for coop-
erative vehicles modeling. In AAAI.
He, B.; Li, H.; Jang, Y. K.; Jia, M.; Cao, X.; Shah, A.;
Shrivastava, A.; and Lim, S.-N. 2024. Ma-lmm: Memory-
augmented large multimodal model for long-term video un-
derstanding. In CVPR.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR.
Huang, Y.; Zheng, W.; Zhang, Y.; Zhou, J.; and Lu, J. 2023.
Tri-perspective view for vision-based 3d semantic occu-
pancy prediction. In CVPR.

Jeddi, A. B.; Dehghani, N. L.; and Shafieezadeh, A.
2023. Memory-augmented Lyapunov-based safe reinforce-
ment learning: end-to-end safety under uncertainty. IEEE
TAI.
Jiang, H.; Cheng, T.; Gao, N.; Zhang, H.; Lin, T.; Liu, W.;
and Wang, X. 2024. Symphonize 3d semantic scene com-
pletion with contextual instance queries. In CVPR.
Li, B.; Sun, Y.; Liang, Z.; Du, D.; Zhang, Z.; Wang, X.;
Wang, Y.; Jin, X.; and Zeng, W. 2023a. Bridging stereo
geometry and BEV representation with reliable mutual in-
teraction for semantic scene completion. arXiv preprint
arXiv:2303.13959.
Li, F.; Zhang, H.; Xu, H.; Liu, S.; Zhang, L.; Ni, L. M.;
and Shum, H.-Y. 2023b. Mask dino: Towards a unified
transformer-based framework for object detection and seg-
mentation. In CVPR.
Li, Y.; Li, S.; Liu, X.; Gong, M.; Li, K.; Chen, N.; Wang, Z.;
Li, Z.; Jiang, T.; Yu, F.; et al. 2024. Sscbench: A large-scale
3d semantic scene completion benchmark for autonomous
driving. In 2024 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 13333–13340. IEEE.
Li, Y.; Yu, Z.; Choy, C.; Xiao, C.; Alvarez, J. M.; Fidler, S.;
Feng, C.; and Anandkumar, A. 2023c. Voxformer: Sparse
voxel transformer for camera-based 3d semantic scene com-
pletion. In CVPR.
Liu, L.; Wang, W. Y.; and Cai, P. 2024. Point Cloud Classi-
fication via Learnable Memory Bank. In MMM.
Liu, Q.; and Mukhopadhyay, S. 2018. Unsupervised learn-
ing using pretrained CNN and associative memory bank. In
IJCNN.
Loshchilov, I.; and Hutter, F. 2017. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101.
Morad, S.; Kortvelesy, R.; Liwicki, S.; and Prorok, A. 2024.
Reinforcement learning with fast and forgetful memory.
NeurIPS.
Oh, S. W.; Lee, J.-Y.; Xu, N.; and Kim, S. J. 2019. Video
object segmentation using space-time memory networks. In
ICCV.
Rist, C. B.; Emmerichs, D.; Enzweiler, M.; and Gavrila,
D. M. 2021. Semantic scene completion using local deep
implicit functions on lidar data. IEEE TPAMI.
Shamsafar, F.; Woerz, S.; Rahim, R.; and Zell, A. 2022. Mo-
bilestereonet: Towards lightweight deep networks for stereo
matching. In WACV.
Singh, G.; Akrigg, S.; Di Maio, M.; Fontana, V.; Alitappeh,
R. J.; Khan, S.; Saha, S.; Jeddisaravi, K.; Yousefi, F.; Culley,
J.; et al. 2022. Road: The road event awareness dataset for
autonomous driving. IEEE TPAMI.
Song, S.; Yu, F.; Zeng, A.; Chang, A. X.; Savva, M.; and
Funkhouser, T. 2017. Semantic scene completion from a
single depth image. In CVPR.
Van Den Oord, A.; Vinyals, O.; et al. 2017. Neural discrete
representation learning. NeurIPS.
Wang, W.; Dong, L.; Cheng, H.; Liu, X.; Yan, X.; Gao, J.;
and Wei, F. 2024. Augmenting language models with long-
term memory. NeurIPS.



Wang, Y.; and Tong, C. 2024. H2gformer: Horizontal-to-
global voxel transformer for 3d semantic scene completion.
In AAAI.
Xia, Z.; Liu, Y.; Li, X.; Zhu, X.; Ma, Y.; Li, Y.; Hou, Y.; and
Qiao, Y. 2023. Scpnet: Semantic scene completion on point
cloud. In CVPR.
Xu, R.; Xia, X.; Li, J.; Li, H.; Zhang, S.; Tu, Z.; Meng, Z.;
Xiang, H.; Dong, X.; Song, R.; et al. 2023. V2v4real: A real-
world large-scale dataset for vehicle-to-vehicle cooperative
perception. In CVPR.
Yao, J.; Li, C.; Sun, K.; Cai, Y.; Li, H.; Ouyang, W.; and
Li, H. 2023. Ndc-scene: Boost monocular 3d semantic
scene completion in normalized device coordinates space.
In ICCV.
Yuan, L.; Xie, B.; and Li, S. 2023. Robust test-time adapta-
tion in dynamic scenarios. In CVPR.
Zhang, Y.; Zhu, Z.; and Du, D. 2023. Occformer: Dual-path
transformer for vision-based 3d semantic occupancy predic-
tion. In ICCV.


